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This paper investigates the mode splits of the bending coupled modes of
a rotating shaft with multiple #exible disks, in which the disks are rigidly attached
to the rigid shaft supported by bearings. The bending coupled modes, in which
shaft bending modes are coupled with one nodal diameter disk modes, are
classi"ed as the balanced and unbalanced modes. The mode splits of the balanced
modes are the same as those of pure disk modes since the shaft does not experience
any motion. On the other hand, the mode splits between pairs of the forward and
backward unbalanced modes are found to be dependent upon the disk/shaft
con"guration and the shaft support sti!ness, as well as the rotational speed and the
ratio of polar to diametrical moment of inertia.
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1. INTRODUCTION

The trend toward high performance and e$ciency in the design of rotating
machines, such as computer disk memory, gas turbines and grinding wheels, has
required the need to consider the #exibility of disks for accurate analysis of their
vibrational characteristics. However, due to the dynamic coupling between shaft
and disks of a rotating shaft-multiple disk, the vibration analysis becomes very
complicated.

In the area of rotor dynamics, the vibration characteristics of a shaft}disk
system have been studied by many investigators, and the studies are mainly
concerned with the e!ects of disk #exibility on the shaft whirl and vibration
[1}6]. Some other studies [7, 8] discussed the importance of the coupling
between disk and shaft, and the focus was both on disk and shaft motion.
However, the analysis model, which consists of #exible shaft and disks, was so
complicated that the coupling between the disk and shaft was not clearly
understood.

The vibration and stability analysis of rotating disks such as grinding wheels,
circular saws, wafer cutting machines, and computer disk memory units has been of
great interest to many researchers [9}15]. Among such studies, the presence of
backward and forward travelling wave modes in a rotating disk has been
extensively investigated in the literature [13}15]. Chen and Bogy [16] presented
0022-460X/99/330425#22 $30.00/0 ( 1999 Academic Press
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a theoretical study to predict the e!ect of parameter change on the eigenvalues of
the system in which a spinning disk contacts with a stationary load system.
However, these studies [9}16] did not take into consideration the support motion
in their analysis models. Recently, some studies have been carried out, which
considered not only disk vibration but also support motion. Mote [17], Yang [18],
and Chen and Bogy [19] took into consideration the rigid body motion in
a single-disk system for their analysis. Shen and Ku [20, 21] investigated the
multiple elastic disks}spindle system which undergoes rigid-body rotation
(rocking) and axial translation. They referred the lower precessional modes as
unbalanced modes, and the disk modes as balanced modes of the disk}shaft system.

Here, we can classify coupled vibration modes of a multiple disks}shaft system
into bending coupled and axially coupled modes: the former is associated with
disk modes with one nodal diameter and the angular moment caused by elastic
deformation of disks a!ects the shaft motion, whereas the latter is associated
with the disk modes with no nodal diameter and the axial force caused by elastic
deformation of disks. We also classify the bending and axially coupled modes
into balanced and unbalanced modes. Hereafter, we mean bending coupled
modes when we mention balanced or unbalanced modes without any special
notation. The balanced (m, 1) modes or the balanced modes associated with (m, 1)
disk mode, where the "rst and second indices in parenthesis denote the number
of nodal circle and diameter of disk, lead to pure disk modes since the total angular
momentum caused by (m, 1) disk modes, m"0, 1, 2,2, is kept at zero.
The unbalanced (m, 1) modes couple the shaft precessional mode with disk
modes, in which the angular momentum caused by the disk elastic mode allows
the shaft to have a precessional mode. The unbalanced modes will also be classi"ed
as forward and backward unbalanced modes according to the precessional
direction.

This paper studies the dynamics of a rotating shaft with multiple #exible disks,
especially the e!ect of disk #exibility on the mode split of the bending coupled
modes over the rotational speed, by which the modal parameters can be easily
identi"ed by using a waterfall plot of experimental results. Without the knowledge
of vibrational characteristics of this system, it is very di$cult to identify the modal
parameters by the conventional modal testing method utilizing mode shapes, since
the shaft and disk motions are coupled with each other and their modes tend to be
closely packed in the frequency domain. In addition, it frequently occurs that the
vibration signal of the rotational part cannot be obtained and pick-ups cannot be
placed properly due to space limitation.

The splits of each forward and backward unbalanced mode pair over rotational
speed are investigated by introducing parameters such as the coupling factor, the
ratio of polar to diametrical moment of inertia and the shaft support sti!ness. The
characteristic equation of motion is derived and discretized by employing single- or
two-mode approximation, to solve for the natural frequencies associated with the
unbalanced modes. Although the analysis model assumes that the shaft is rigid,
the analytical "ndings can be easily extended to account for #exibility of the shaft.
The mode splits of the axially coupled modes are not investigated since such modes
do not split as the rotational speed increases.
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2. EQUATIONS OF MOTION

The typical commercial HDD spindle system shown in Figure 1 is essentially an
assemblage of a shaft with multiple disks and support bearings, which is normally
modelled as in Figure 2. The motion of a multiple disks}shaft system can be
conveniently described with four co-ordinate frames: the inertial reference frame
X

0
>

0
Z

0
of which the X

0
-axis is located on the centerline of bearings, the reference

frame X>Z which is parallel to the inertial frame but with its origin on the shaft
Figure 2. Analysis model and the co-ordinate system.

Figure 1. Schematic diagram of a typical three-disk HDD spindle system [22].
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centerline or the disk center, the local frame xyz which rotates with the shaft about
the X-axis and the local frame x

2
y
2
z
2

which moves with the rigid-body motion of
the disk. The orientation of the x

2
y
2
z
2

frame is de"ned by rotation of !h
y
about

the y-axis and then rotation of h
z
about the z

2
-axis. Assuming that the disks behave

according to the classical plate theory and using Hamilton's principle, we can
derive the equations of motion in the rotating frame (xyz) with its origin located at
the centroid of the multiple disks}shaft system as given in Appendix A, which are
essentially identical to the derivations made in references [8, 21]. When the
bearings are isotropic and the resultant moment of the bearing forces with respect
to the centroid of the system is zero, the rotary and translational motions of the
shaft become uncoupled. In addition, the equations of motion can be discretized by
use of Galerkin's method or the variational form of the equation of motion given in
Appendix A, in which the elastic motion of the ith disk is expressed as
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+
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where m and n are the number of nodal circles and nodal diameters of the disk
respectively, R(i)
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(r) is the radial mode shape of the disk, and a(i)
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it can be easily proven that the disk modes with one nodal diameter couple with the
rotary motion of the shaft, the disk modes with no nodal diameter couple with the
axial motion of the shaft, and the disk modes with more than one nodal diameter
do not couple with the other modes [8, 21].

Considering only the one nodal diameter modes of N disks and introducing the
complex co-ordinates in the rotating frame de"ned as
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y
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we can obtain the discretized equations of bending coupled motion as
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Here, o
d
and h are the density and thickness of the disk, k

t
is the shaft support

sti!ness, J
T

is the total diametrical moment of inertia, a is the ratio of the polar to
the diametrical moment of inertia for the system, R(i) is the radial mode shape in
m1
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the presence of centrifugal e!ect, u(i)
m1c

is the natural frequency de"ned in the
rotating frame of the rotating disk subject to the in-plane centrifugal force, and X is
the rotational speed. The above equations may easily be re-expressed in the
stationary co-ordinates by using the co-ordinate transformation relations given by

tI "te+X t, cJ (i)
m1

"c(i)
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e +X t, (5)

where tI and cJ (i)
m1

are the complex stationary co-ordinates. Since it holds for the shaft
with N identical disks that for m"0, 1, 2,2,M, and i"1, 2,2, N,
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equation (4) becomes [20, 21]
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where the subscript M is the number of one nodal diameter modes of interest. If we
set
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we obtain, from equation (6),

E !B
0

!B
0

2 !B
m

!B
m

2 !B
M

!B
0

A
0

0 0 0 0
!B

0
0 A

0
0 0 0

F } F
!B

m
0 0 A

m
0 0

!B
m

0 0 0 A
m

0
F }

!B
M

0 0 2 0 0 A
M

G
W

C(1)
01

C(2)
01
F

C(1)
m1

C(2)
m1
F

C(N)
M1

H" M0N, (10)



430 C.-W. LEE AND J.-S. HAM
where
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The characteristic equation associated with equation (10) becomes
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From equation (12), Shen and Ku [20, 21] introduced the concept of &&balanced and
unbalanced'' modes of a multiple elastic disk system, but treated only the "rst
unbalanced modes [refer to Figure 3(a)] in addition to the balanced modes. In this
case, the unbalanced (m, 1) mode pair is the (m#1)th unbalanced mode pair which
is associated with the m nodal circle and one nodal diameter mode of disk. The
solution to the relation
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leads to the balanced modes of the disks: while the shaft experiences no motion, the
disks experience the balanced elastic deformations so that the total angular
momentum is kept at zero. Another solution to the relation
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implies that the shaft and disks experience in-phase or out-of-phase rotary motions
with each other, while the disks behave like a single disk, as shown in Figure 3.
Thus, the multiple disks}shaft system can be described by a pure disk system for the
balanced case, and by a single disk}shaft system for the unbalanced case. The
characteristic equation (14) for the unbalanced modes can be written as
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Figure 3. Examples of unbalanced (0, 1) modes: (a) in-phase ("rst) forward precessional unbalanced
(0, 1) mode; (b) out-of-phase (second) backward precessional unbalanced (0, 1) mode. u is the
precessional speed and X is the rotational speed.
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where r
1
and r

2
are the inner and outer radii of the disk respectively. Here H

m
and g will

be referred to as the disk #exibility factor and the con"guration factor respectively.

3. ANALYSIS OF PARAMETERS

From equation (15), we can obtain the natural frequencies of the unbalanced
modes, as the rotational speed is varied, for given parameters associated with
a multiple disks}shaft system. It should be noted that two kinds of uncoupled basic
motions, which are the pure disk vibration and the rotary motion of a simple
gyroscopic system, are coupled with each other through the coupling terms
associated with F

m
"gH

m
, m"0, 1, 2,2, M. The disk #exibility factor

H
m

depends only on the ratio of inner and outer radii and the dimensionless radial



Figure 4. Flexibility factor (H
m
) for the "ve lowest modes with one nodal diameter of a rotating

disk: m
1
"0)316, u0

01
"597 Hz.
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mode shape of the disk, which is a function of the dimensionless rotational speed
and the boundary conditions as shown in Appendix B.

Figure 4 shows the disk #exibility factor H
m

for the "ve lowest modes with one
nodal diameter as the rotational speed is varied. The numerical calculations were
carried out by adopting the "nite-element method using annular "nite-element
[24]. Note that the disk #exibility factor drastically decreases as the number of
nodal circles increases, whereas it remains almost unchanged as the rotational
speed increases. It implies that the one nodal diameter modes with more than one
nodal circle do not signi"cantly contribute to the coupling with the shaft rotary
mode and the centrifugal force caused by change in the rotational speed has an
insigni"cant in#uence on the radial mode shapes. Therefore, it suggests that one
mode or, at most, two mode approximation is enough to calculate the natural
frequencies of HDD spindle systems with fair accuracy.

Figure 5 shows the disk #exibility factor H
0

associated with the one nodal
diameter and no nodal circle mode of the disk as the clamping ratio of the disks is
varied. Note that the factor H

0
signi"cantly increases as the clamping ratio of the

disk decreases, implying that the corresponding radial mode shape is in#uenced
greatly by change in the clamping ratio. When the clamping ratio approaches zero,
the #exibility factor approaches the maximum value of 0)25. On the other hand,
when the clamping ratio is near 1, it decreases to zero and the coupling e!ect
vanishes.



Figure 5. Flexibility factor (H
0
) for (0, 1) mode of a non-rotating disk with the clamping ratio varied.

TABLE 1

Parameters for a shaft with disks equally and symmetrically spaced between 26 mm
shaft length: shaft length"30 mm, shaft outer radius"15 mm, shaft inner
radius"8 mm, disk outer radius"47)5 mm, disk inner radius"15 mm, disk thick-

ness"8 mm

Number of
disks

J
P
(]10~6)
kgm2

J
T
(]10~6)
kgm2

s
1

s
2

a g

0 6)14 6)26 * * 0)98 0
1 23)87 15)12 0)71 0)35 1)58 2)37
2 41)61 23)99 0)35 0)17 1)73 2)99
3 59)34 32)86 0)24 0)12 1)81 3)27
5 94)81 50)60 0)14 0)07 1)87 3)54

10 183)48 94)93 0)07 0)03 1)93 3)77

Note: Gap between two neighboring disks is equal to 26 mm divided by the number of disks minus
the thickness of disk.
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The con"guration factor g, which determines the coupling factor together with
the disk #exibility factor, depends on the thickness and the outer radius of the disks,
the number of disks and the diametrical moment of inertia of the assembled system.
The con"guration factor g and the ratio a of polar to diametrical moment of inertia
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can be rewritten as
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where J(i)
T

is the diametrical moment of inertia of the ith disk with respect to its own
axis, and D is the shifting e!ect because the moments of inertia are to be calculated
with respect to the axes located at the centroid of the system. In general, since
the value a is smaller for the shaft than for the disk, s

1
is larger than s

2
.

Table 1 illustrates the parameter values for a shaft with multiple disks which are
equally spaced and symmetrically arranged with respect to its centroid. Note that
as the number of disks increases, both a and g tend to increase as expected. For
given parameters a, g and H

m
, equation (15) can be solved to obtain natural

frequencies for a shaft with multiple disks. The ranges that H
m

and g can take are
given in equations (C1) and (C3) in Appendix C.

4. MODE SPLIT

In case of rigid disk, since u
m1c

goes to in"nity, equation (15) reduces to, in the
rotating frame,

s2!jX (a!2)s#u2
t
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or, equivalently in the stationary frame, by replacing s by s!jX ,

s2!jXas#u2
t
"0. (22)

As shown in Figure 6, it is well known [23] that the split in absolute frequency
between the forward and backward precessional modes of a rotating rigid disk
supported by isotropic spring is aX in the stationary frame. On the other hand, in
the case when the support sti!ness (k

t
) approaches in"nity, only the disk vibratory

motion remains e!ective, for which the theory has been well established.
When the disk has #exibility, equation (15) reduces to, using two-mode

approximation in the rotating frame,
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Figure 6. Eigenvalues of a simple rotor supported by isotropic spring [23]: **: positive; ) ) ) ) ) :
negative frequency
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where the dimensionless parameters are de"ned as
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and u0
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is the natural frequency of the non-rotating disk. From equations (23) or (24),
we can obtain the modal frequencies of the unbalanced modes for given parameters
associated with a multiple disks}shaft system. Since there is no damping, equations
(23) or (24) yield six imaginary roots. Also, in the stationary frame,
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holds, where Du
1
, Du

2
and Du

3
are the mode splits associated with the "rst, second

and third forward and backward unbalanced mode pairs respectively. Note that in
the stationary frame, the forward modes are larger in absolute frequency than the
backward mode. When the single-mode approximation is used, equations (24) and
(25), respectively, reduce to

(s*2!jX*as*#u*2
t
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01c

)!F
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and

2)
Du

1
#Du

2
X

"4!
(2!a)
1!F

0

(4 (27)

where the inequality relations are proven in Appendix C.
The forward and backward modal frequencies associated with a balanced disk

mode are of the same magnitude but reversed in sign when they are de"ned in
the rotating frame. It leads to no mode split, for all balanced disk modes,
in the rotating frame but to the mode split of 2X in the stationary frame. On
the other hand, the mode split associated with the unbalanced mode pairs always
occurs for aO2, irrespective of the co-ordinates being rotating or stationary.
In practice, since we usually observe vibration phenomena of machines
and structures with respect to the ground base, it is convenient to express the
modal frequencies in the stationary frame for direct comparison with the
observations.

5. SIMULATION AND EXPERIMENT

In this section, the numerical simulation for disk vibration was carried out by
using the "nite element method using annular element [24]. The basic properties of
the simulated system are listed in Table 2, which is a typical commercial three-disk
HDD spindle system. In Figure 7, the modal frequencies of the three-disk HDD
spindle system are shown in the rotating frame. The "rst unbalanced mode pair
(marked 1F and 1B1 ) are lower in absolute frequency than the balanced (0, 1) disk
mode pair [marked (0, 1)F and (0, 1)B1 ] where the upper bar means the negative
TABLE 2

Speci,cations of the three-disk HDD spindle system [22]

Properties Dimension (mm)

Young's modulus
(N/m2)

Poisson's
ratio

Density
(kg/m3)

Hub 72)0]109 0)3 2750 Inner radius"6)5
Outer radius"16)5
Length"10)54

Disk 72)0]109 0)3 2800 Thickness"0)8
Inner radius"16)5*
Outer radius"47)5

Yoke 204]109 0)3 7800 Bearing properties
(refer to Figure 2)

Magnet 72)0]109 0)3 5600 k
bx

6)0]106 N/m
k
by
"k

bzc
bx
"c

by
"c

bz

2)0]107 N/m
0 Ns/m

Note: E!ective inner radius of 15 mm, considering the imperfect clamping condition, was used in the
calculation of the modal parameters of a disk [22].
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modal frequency, and F and B denote the forward and backward modes
respectively. Note that the unbalanced modes all split in the rotating frame, except
when a is equal to 2, as the rotational speed increases unlike the balanced disk
modes. While the backward unbalanced modes are larger in absolute frequency
than the corresponding forward unbalanced modes in the rotating frame, the
reverse holds true in the stationary frame. The results of the two-mode
approximation is found to be nearly the same as those of the assumed modes and
substructure synthesis method [8], and the single-mode approximation gives fairly
good results for the "rst and second unbalanced modes. Figure 8 shows the same
results as in Figure 7 but converted to the stationary frame. Note that the "rst
forward and backward unbalanced modes (marked 1F and 1B1 ) are lower in
absolute frequency than the forward and backward balanced (0, 1) disk modes
Figure 7. Natural frequencies of HDD spindle system in the rotating frame: m
1
"0)316, u*

t
"1)33,

a"1)95, g"3)62: - - - -: unbalanced modes (single-mode approximation); : unbalanced modes
(two-mode approximation); **: balanced or disk mode.



Figure 8. Natural frequencies of HDD spindle system in the stationary frame: m
1
"0)316,

u*
t
"1)33, a"1)95, g"3)62: - - - - - - : forward and backward unbalanced modes (two-mode approx.);

} } } } : forward and backward disk modes.
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[marked (0, 1)F and (0, 1)B1 ], respectively, as in the rotating frame. The mode split at
a typical rotational speed of X*"0)5 associated with the "rst unbalanced mode
pair is found to be 1)99X, which is di!erent from, but very close to, 2X, the typical
mode split associated with the (0, 1) disk mode pair. On the other hand, the mode
split at X*"0)5 associated with the second unbalanced mode pair is found to be
1)79X, which is fairly apart from aX ("1)95X), the typical mode split associated
with free gyro mode pair. In Figure 9, the e!ects of the coupling factor (g) and the
ratio of polar to diametrical moments of inertia (a) on mode split are demonstrated.
Note that both g and a tend to signi"cantly in#uence the split of not the "rst, but
the second, unbalanced mode pair. From this "gure, the mode splits of the "rst and
second unbalanced mode pairs at X*"0)5 are found to be 1)998X and 1)89X for
a"1)95 and g"2)5, 1)98X and 0)90X for a"1)5 and g"2)5, and 1)99X and 1)44X



Figure 9. Natural frequencies of bending coupled modes for a disks/shaft system in the stationary
frame: m

1
"0)316, u*

t
"2: : a"1)95, g"2)5; ** : a"1)5, g"2)5; } } } : a"1)5, g"0)5;

- - - - : balanced (0, 1) disk mode.
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for a"1)5 and g"0)5, respectively. In addition, the sums of the two mode splits
for each cases are 3)89X, 2)88X and 3)43X respectively, which agree well with
equation (27). Note that the change in mode split and mean modal frequency due to
the coupling e!ect is noticeable for the second unbalanced mode pair (precession
dominant modes), unlike the "rst unbalanced mode pair which remains nearly the
same as the balanced (0, 1) disk mode pair until veering occurs. As the rotational
speed increases, the "rst (marked 1F) and second (marked 2F) forward unbalanced
modes approach each other and then veer away. Figure 10 treats the case of weak
support (u*

t
"0)5), in which the mode splits of unbalanced modes are compared

with the rigid precessional mode with no coupling. Note that the "rst unbalanced
mode pair are dominated by the rigid-body precessional motion. While the mode
split of the "rst unbalanced mode pair remains nearly as aX (split of rigid disk
precessinal mode pair) and that of the second pair decreases due to the coupling
e!ect over the low rotational speed range. Both pairs of unbalanced modes are



Figure 10. Natural frequencies of bending coupled modes for a disks/shaft system in the stationary
frame: m

1
"0)316, u*

t
"0)5, a"1)5: : unbalanced modes (g"2)5); } - } - } : rigid precessional

modes (g"0); - - - - : balanced (0, 1) disk mode.
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strongly in#uenced by the coupling e!ect over the high rotational speed range.
Figure 11 shows the e!ect of the support sti!ness on model splits at X*"0)5. Note
that the support sti!ness tends to greatly a!ect the "rst and second unbalanced
mode pairs. The mode split of the "rst unbalanced mode pair changes from aX (free
gyro modes) to 2X(pure disk modes) as the support sti!ness increases. In particular,
as the support sti!ness changes, the change in mode split associated with the "rst
and second unbalanced mode pairs is pronounced, while the sum of the two mode
splits remains nearly unchanged.

From the knowledge of mode splits gained so far, we can easily identify the
modes of a multiple disks}shaft system from the so-called waterfall plots. The
waterfall plot in Figure 12 was obtained from a series of impact tests with
a commercial HDD spindle system "xed on a rigid base [22]. The (0, 2) and (0, 3)
disk modes can be easily identi"ed by the degree of mode splits. But, in the
frequency range of 450}700 Hz, many modes are densely packed. There appear two



Figure 11. Natural frequencies of bending coupled modes for a disks/spindle system in the
stationary frame: m

1
"0)316, a"1)5, g"2)5,X*"0)5.
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pairs of modes with mode split of nearly twice the rotational speed: the pair of lower
modes are associated with the "rst forward (1F) and backward (1B1 ) unbalanced
modes, and the pair of slightly higher modes are associated with the forward
[(0, 1)F] and backward [(0, 1)B1 ] balanced disk modes. The second (higher)
unbalanced modes did not appear in the frequency range of interest due to the scale
limit. The third modal peak with no mode split is associated with either the axial
mode or balanced (0, 0) mode.

Summarizing previous discussions, we can simulate the modal frequencies of
unbalanced modes over the rotational speed from the characteristic equations (24)
or (26), with the proper values of the parameters a, F

0
, F

1
and u

t
de"ned for

a multiple disks}shaft system. The "rst and second unbalanced modal frequencies
are always lower and higher in magnitude, respectively, than the balanced (0, 1) disk
modes, and the sum of mode splits depends on a, and the coupling factor, but not
on the shaft support sti!ness. However, the shaft support sti!ness a!ects the mode
split of the two lowest unbalanced mode pairs.



Figure 12. Waterfall plot of the three-disk HDD on a rigid base [22].
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6. CONCLUSIONS

The vibrational modes of a multiple disks}shaft system may be easily identi"ed
by utilizing the knowledge of their mode splits as the rotational speed changes.

The rotary mode of the rigid shaft and the (0, 1) disk mode are coupled to generate
the two unbalanced mode pairs, whose modal frequencies are split in the frequency
domain, as the rotational speed changes. The "rst and second unbalanced modal
frequencies are always lower and higher in magnitude, respectively, than the balanced
(0, 1) disk modes. The sum of mode splits associated with the two lowest unbalanced
mode pairs decreases from (2#a)X as the coupling factor increases and/or a decreases.
The shaft support sti!ness determines the mean natural frequencies together with the
coupling factor and a!ects the mode splits of the two lowest unbalanced mode pairs.

For the commercial HDD spindle system with relatively strong support, the
decrease in mode split is more pronounced for the second unbalanced mode pair
than the "rst pair, which has nearly the same mode split of 2X as the balanced (0,1)
disk modes, below the rotational speed where veering occurs. But in the case of
weak support, the mode split of the "rst unbalanced mode pair is nearly the same as
aX and, again the decrease in mode split is more pronounced for the second
unbalanced mode pair below the rotational speed where veering occurs.
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APPENDIX A: EQUATIONS OF MOTION IN THE ROTATING FRAME
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where h
z
"Lu

y
/Lx, h

y
"Lu

z
/Lx are Euler angles; indices G, i are the centroid of

the system, and the ith disk; u
ik
, u

Gk
(k"x, y, z) are the de#ections of shaft centerline;

J
1
, J

2
, J

3
the total moment of inertia with respect to x-, y- and z-axis; J

in
(n"1, 2, 3)

the moment of inertia for the ith disk, M
s
, M

i
the mass of shaft and disk and,

c
bk

, k
bk

(k"r, x, y) the damping and sti!ness of bearing in each direction.

In-plane stresses due to centrifugal force:
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APPENDIX B: DIMENSIONLESS EQUATIONS OF DISK MOTION

The equation of motion of the form
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where u
0

is the natural frequency of the non-rotating disk and
b4
0
"12o

d
r4
2
(1!l2)/Eh2 is the corresponding dimensionless eigenvalue, which

depends on the ratio of the inner to outer radii and the boundary conditions [25].
Thus, the dimensionless modal frequencies and mode shape are dependent upon
the dimensionless rotational speed and boundary condition only.

APPENDIX C: INEQUALITY RELATIONS
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coincides with the simulated results in Figures 4 and 5. Since H
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